Codesnippets > Math

Vector 2D

(1/2) > >>

Dark Schneider:
Typical case of 2D-Vector, very usefull for sprites and other 2D things:


--- Code: (glbasic) ---// --------------------------------- //
// TYPE TVector2
// --------------------------------- //

CONSTANT TVector2VersionMajor%=1, TVector2VersionMinor%=1, TVector2VersionBuild%=0, TVector2VersionRevision%=2

//! TVector2
//!
//! Author: Dark Schneider
//!
//! Two-dimensional vector


//---------------------//
// --- DEFINITIONS --- //
//---------------------//


//---------------//
// --- TYPES --- //
//---------------//
//! TVector2 types

//! Type TVector2
//! Main type
TYPE TVector2

//---------------//
// - VARIABLES - //
//---------------//
x#=0
y#=0


//---------------//
// - FUNCTIONS - //
//---------------//
//! TVector2 functions

//! Set type data
//\param x# - coordinate X
//\param y# - coordinate Y
//\return Itself with new values
FUNCTION Set AS TVector2: x#=0, y#=0
self.x=x; self.y=y
RETURN self
ENDFUNCTION


//\return Length squared of vector
FUNCTION LengthSq:
RETURN self.x*self.x+self.y*self.y
ENDFUNCTION


//\return Length of vector
FUNCTION Length:
RETURN SQR(self.x*self.x+self.y*self.y)
ENDFUNCTION


//\param v - vector for dot product
//\return Dot product of itself with v
FUNCTION DotProduct: v AS TVector2
RETURN self.x*v.x+self.y*v.y
ENDFUNCTION


//\param scale# - scale factor
//\return Itself scaled
FUNCTION Scale AS TVector2: scale#
self.x=self.x*scale#
self.y=self.y*scale#
RETURN self
ENDFUNCTION


//\return Itself normalized
FUNCTION Normalize AS TVector2:
LOCAL l#=self.Length()
IF l < 0.0000001
self.Set(0,0)
ELSE
self.Scale(1.0/l)
ENDIF
RETURN self
ENDFUNCTION


//\return Itself with inverse values: x=-x; y=-y
FUNCTION Invert AS TVector2:
self.x=-self.x
self.y=-self.y
RETURN self
ENDFUNCTION


//\return New vector with inverse values: x=-x; y=-y
FUNCTION Inverse AS TVector2:
LOCAL l_result AS TVector2
l_result=self
l_result.Invert()
RETURN l_result
ENDFUNCTION


//\param v - vector to add
//\return Itself modified
FUNCTION Add AS TVector2: v AS TVector2
self.x=self.x+v.x
self.y=self.y+v.y
RETURN self
ENDFUNCTION


//\param v - vector to substract
//\return Itself modified
FUNCTION Substract AS TVector2: v AS TVector2
self.x=self.x-v.x
self.y=self.y-v.y
RETURN self
ENDFUNCTION


//! Compute angle between the vector and another one
//\param v - vector against to compute angle
//\return Angle from itself to v, values in the range [0-180[
FUNCTION AngleWith: v AS TVector2
LOCAL div#, dot#
div = self.Length() * v.Length()
IF div = 0 THEN RETURN 0
dot = self.DotProduct(v) / div
IF ABS(dot) > 1 THEN RETURN 0 // 1.5/1.49999
RETURN ACOS(dot)
ENDFUNCTION


//\return Angle of the vector using X axis as angle=0
FUNCTION ToAngle:
LOCAL l_result#=0
IF self.x<>0 AND self.y<>0
l_result=ATAN(self.y,self.x)
IF self.y<0 THEN l_result=360+l_result
ELSE
IF self.x=0
IF self.y>0
l_result=90
ELSEIF self.y<0
l_result=270
ENDIF
ELSEIF self.y=0 AND self.x<0
l_result=180
ENDIF
ENDIF
RETURN l_result
ENDFUNCTION


//! Modify the vector creating a normalized vector with direction defined by an angle
//\return Itself modified
FUNCTION FromAngle AS TVector2: angle#
self.x=COS(angle)
self.y=SIN(angle)
RETURN self
ENDFUNCTION

ENDTYPE



//-------------------//
// --- FUNCTIONS --- //
//-------------------//
//! Global functions

//! Create a new vector instance
//\param x# - coordinate X
//\param y# - coordinate Y
//\return The new vector instance
FUNCTION TVector2Create AS TVector2: x#=0, y#=0
LOCAL l_result AS TVector2
l_result.Set(x,y)
RETURN l_result
ENDFUNCTION


//! Add 2 vectors
//\param v1 - vector1
//\param v2 - vector2
//\return New vector v=v1+v2
FUNCTION TVector2Add AS TVector2: v1 AS TVector2, v2 AS TVector2
LOCAL l_result AS TVector2
l_result=v1
l_result.Add(v2)
RETURN l_result
ENDFUNCTION


//! Substract 2 vectors
//\param v1 - vector1
//\param v2 - vector2
//\return New vector v=v1-v2
FUNCTION TVector2Substract AS TVector2: v1 AS TVector2, v2 AS TVector2
LOCAL l_result AS TVector2
l_result=v1
l_result.Substract(v2)
RETURN l_result
ENDFUNCTION


//! Scale a vector
//\param v - vector to use as base for scale
//\scale# - scale factor
//\return New vector v*scale
FUNCTION TVector2Scale AS TVector2: v AS TVector2, scale#
LOCAL l_result AS TVector2
l_result=v
l_result.Scale(scale#)
RETURN l_result
ENDFUNCTION


//! Compute a normalized vector with direction defined by an angle
//\return New vector
FUNCTION TVector2FromAngle AS TVector2: angle#
LOCAL l_result AS TVector2
l_result.FromAngle(angle)
RETURN l_result
ENDFUNCTION


//! Computes the linear interpolation between 2 vectors
//\param v1 - vector1
//\param v2 - vector2
//\param interpolation# - interpolation value, [0.0-1.0]
//\return Vector with values of the interpolation
FUNCTION TVector2LinearInterpolation AS TVector2: v1 AS TVector2, v2 AS TVector2, interpolation#
LOCAL l_vresult AS TVector2
l_vresult.x=(1.0-interpolation)*v1.x+interpolation*v2.x
l_vresult.y=(1.0-interpolation)*v1.y+interpolation*v2.y
RETURN l_vresult
ENDFUNCTION

--- End code ---

Moru:
Very nice, saving for later exploration :-)

Schranz0r:
I like that!
Very helpful code

zxevious:
Very, very useful for IA ;) Thank you very much indeed!

erico:
This seems to be great!
...but beyond my capabilities on understanding... :(

Navigation

[0] Message Index

[#] Next page

Go to full version